SCHINZEL ORDERINGS IN FUNCTION FIELDS

DAVID ADAM
NIHON UNIVERSITY, UNIVERSITÉ D'AMIENS

In 1968, A. Schinzel considered the following problem: let K be a number field, O_{K} be its ring of integers. Does there exist a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of elements of O_{K} such that the set $\left\{a_{1}, \cdots, a_{\mathcal{N}(\mathcal{I})}\right\}$ forms a complete system of representants of O_{K} / \mathcal{I} for any integral ideal \mathcal{I} of O_{K} ? Such a sequence is now called Schinzel ordering of O_{K}. We shall give some results about the existence of a Schinzel ordering in the setting of the function fields.

We shall also observe connections with the notion of Newton ordering. Let D be an integral domain D whose quotient field is K. Denote by $\operatorname{Int}(D)$ the D-module of integervalued polynomials over D, that is

$$
\operatorname{Int}(D)=\{f \in K[X] \mid f(D) \subseteq D\}
$$

A sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ of elements of D is a Newton ordering of D if the sequence of polynomials

$$
P_{n}(X)=\prod_{k=0}^{n-1} \frac{X-b_{k}}{b_{n}-b_{k}}
$$

is a basis of $\operatorname{Int}(D)$.
In the case where D is the ring of integers of a global field K, the notion of Newton ordering coincides with simultaneous ordering introduced by M. Bhargava. We answer to a question raised by D . Thakur (corresponding to an analog of Schinzel problem) on the existence of a simultaneous ordering for a certain class of function fields.

